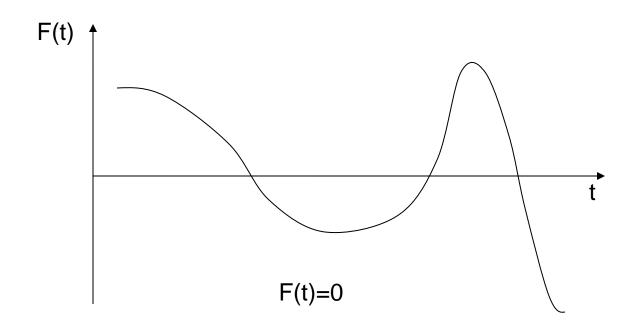
Numerical Analysis

Root Finding I-

Hanyang University

Jong-II Park

Root Finding



When there is no analytic solution eg. $F(t) = e^{-t}(3\cos 2t + 4\sin 2t)t$

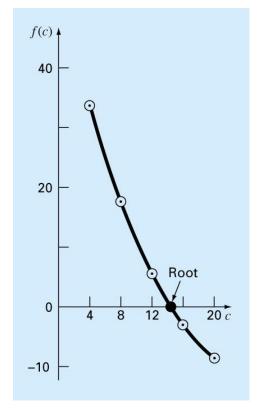
General procedure of root finding

Step 1. Searching rough initial solutions

- graphical method
- incremental search
- experience
- solution of a simplified model

Step 2. Finding an exact solution

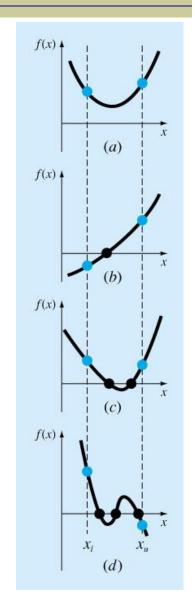
- Bracketing method
- Open method



Graphical method

Bracketing method

- Assume: There must be a solution in a given interval [a,b]
- Key idea: Reducing the interval systematically
- Merit: Convergence to an exact solution
- Methods
 - bisection
 - linear interpolation

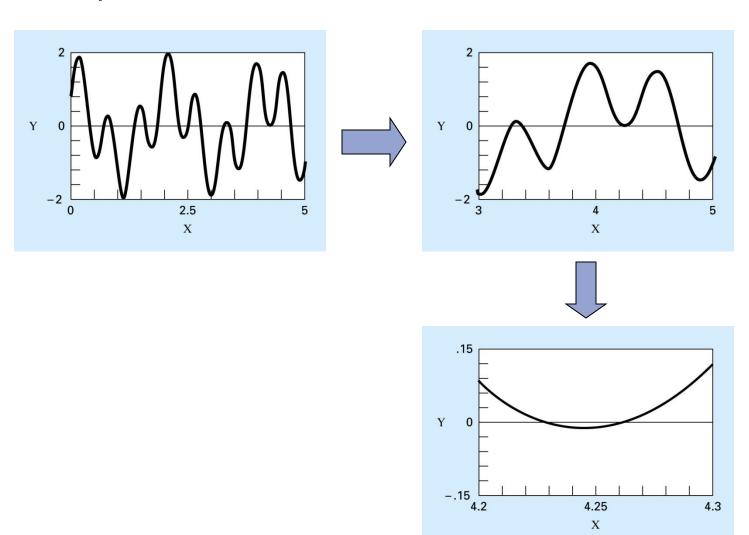


Open method

- Idea: Starting from an arbitrary point, find the root based on a regular iteration
- Risk: Divergence (depending on initial value)
- Merit: Faster convergence than bracketing methods
- Methods
 - fixed-point iteration
 - Newton-Raphson method
 - Secant method
 - Muller method

Initial step: Finding a rough approximation

Graphical method



Initial step: Incremental search

Incremental search method

- Detecting a sign change in the interval [x, dx]
 - ♦ If change → A solution exists
 - Difficulty:
 - Size of dx
 - Too small -> too long time
 - Too large -> missing solutions
 - Multiple roots
 - Possibility of missing a solution
 - → Derivatives at both ends

if different sign => maxima/minima in the interval

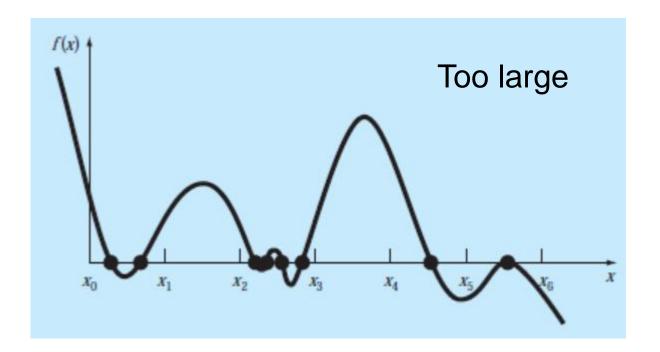
This should be located at the initial step of finding a solution

f(x)

 $f(x) \downarrow$

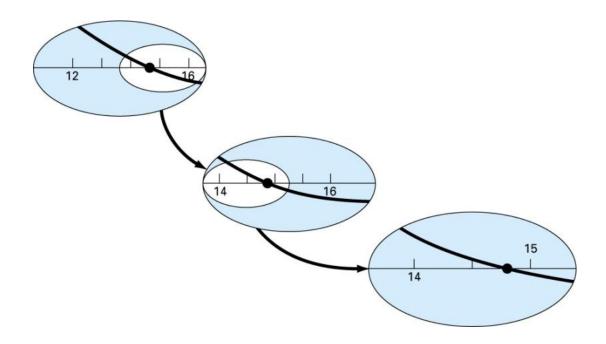
(b)

Interval of incremental search

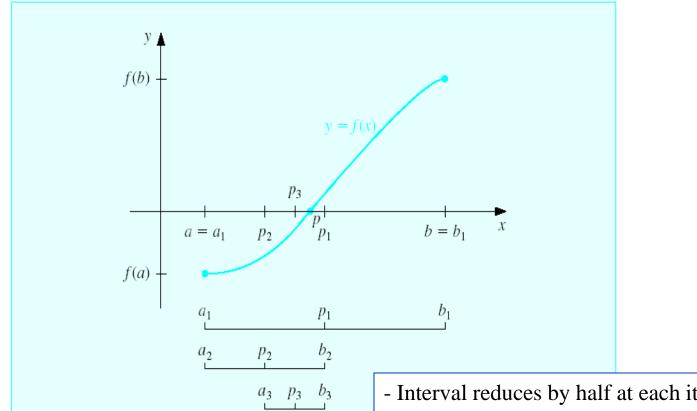


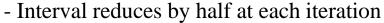
Bisection method(I)

- =Half Interval method = Bolzano method
- Principle: A solution exists in [x1, x2] if f(x1)f(x2) < 0



Bisection method(II)

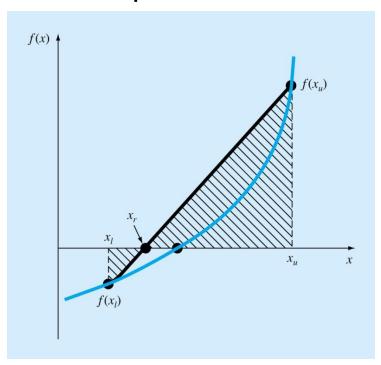




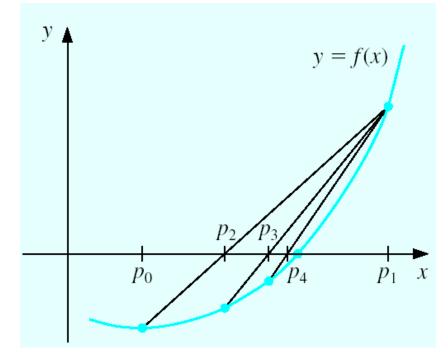
- Simple
- At n-th iteration maximum error < (InitialInterval/2ⁿ)
- Slow convergence
- Cannot cope with multiple roots

Linear interpolation method(I)

- = False position method
- Principle



Algorithm



Linear interpolation method(II)

Algorithm

An interval $[a_{n+1}, b_{n+1}]$, for n > 1, containing an approximation to a root of f(x) = 0 is found from an interval $[a_n, b_n]$ containing the root by first computing

$$p_{n+1} = a_n - \frac{f(a_n)(b_n - a_n)}{f(b_n) - f(a_n)}.$$

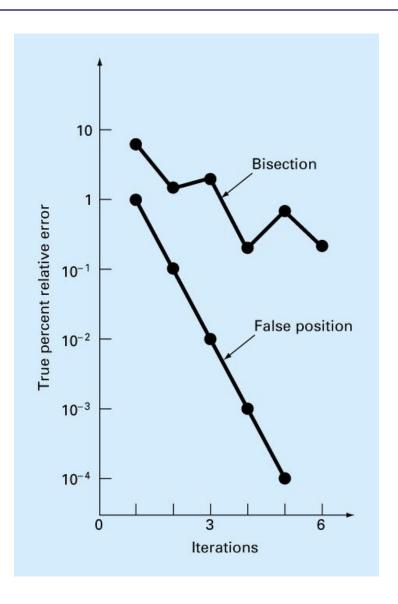
Then set

$$a_{n+1} = a_n$$
 and $b_{n+1} = p_{n+1}$ if $f(a_n) f(p_{n+1}) < 0$,

and

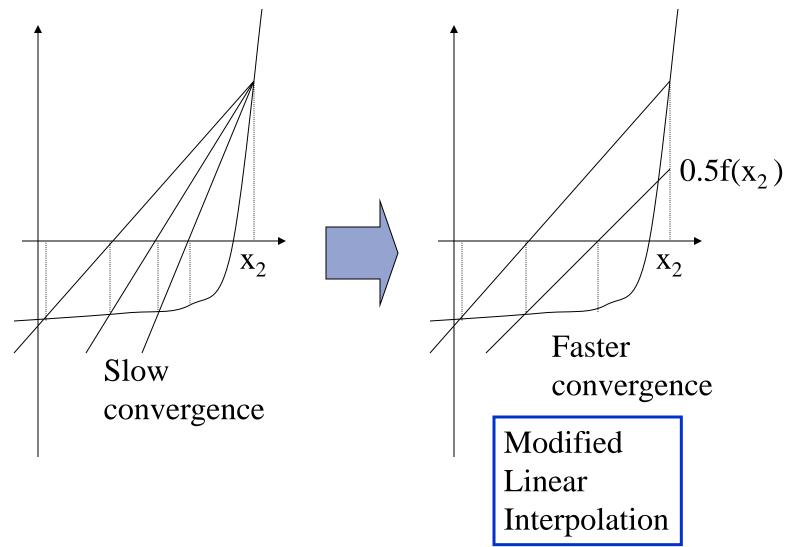
$$a_{n+1} = p_{n+1}$$
 and $b_{n+1} = b_n$ otherwise.

Convergence speed

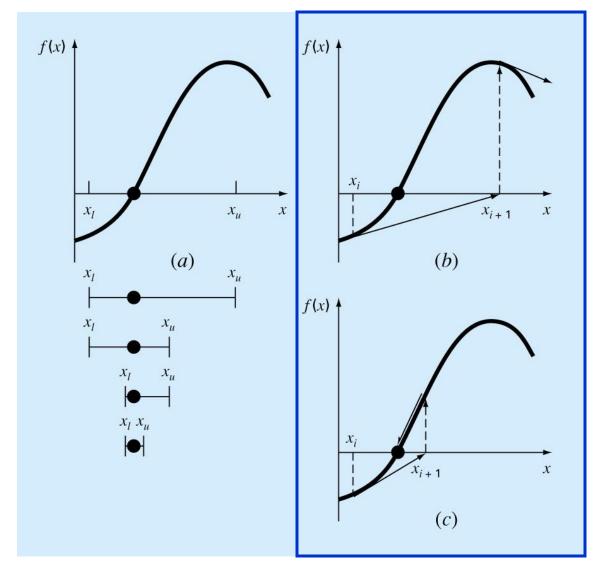


- Faster than Bisection
- Convergence speed depends on curvature (Sometimes extremely slow)
- → Modified linear interpolation method

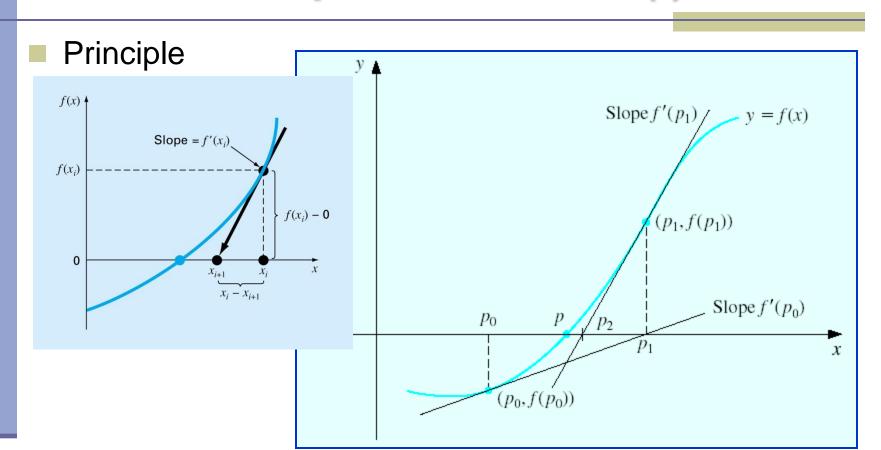
Modified linear interpolation



Open methods



Newton-Raphson method(I)



The approximation p_{n+1} to a root of f(x) = 0 is computed from the approximation p_n using the equation

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}.$$

Newton-Raphson method(II)

- Fast convergence quadratic convergence
- Inefficient if the derivative calculation is complex
- Initial guess matters
- Troubles
 - Cycling
 - Wandering
 - Overshooting

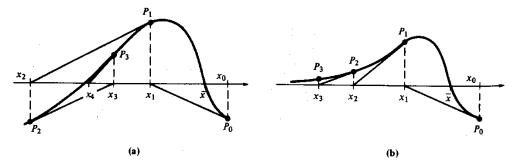


FIGURE 2.2-5 Possible consequences of a poor initial guess on NR.

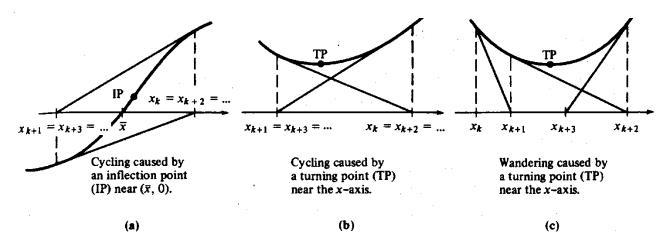
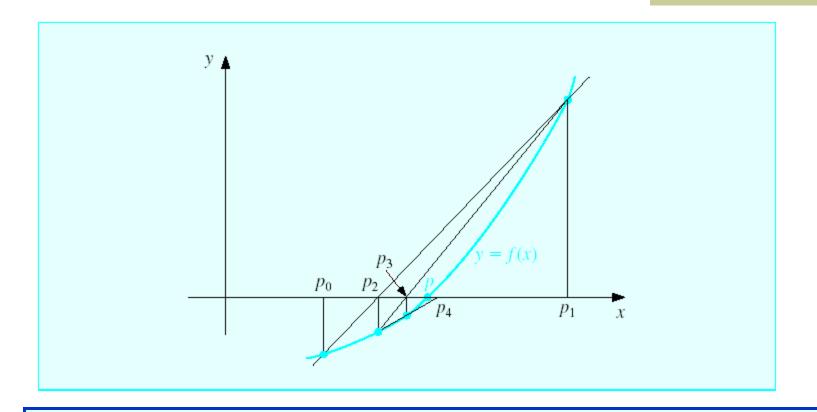


FIGURE 2.2-6 CYCLING AND WANDERING OF NR ITERATES.

Secant method(I)

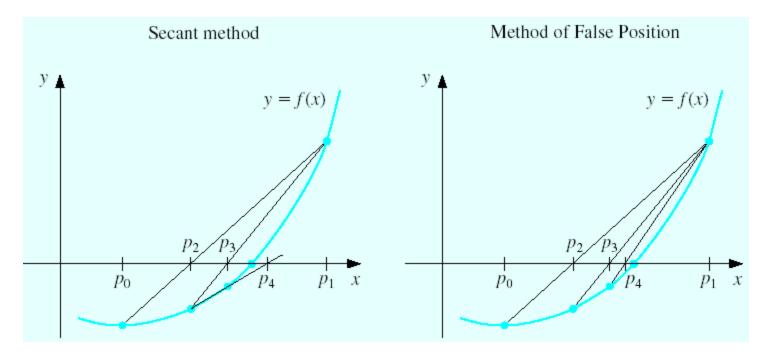


The approximation p_{n+1} , for n > 1, to a root of f(x) = 0 is computed from the approximations p_n and p_{n-1} using the equation

$$p_{n+1} = p_n - \frac{f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}.$$

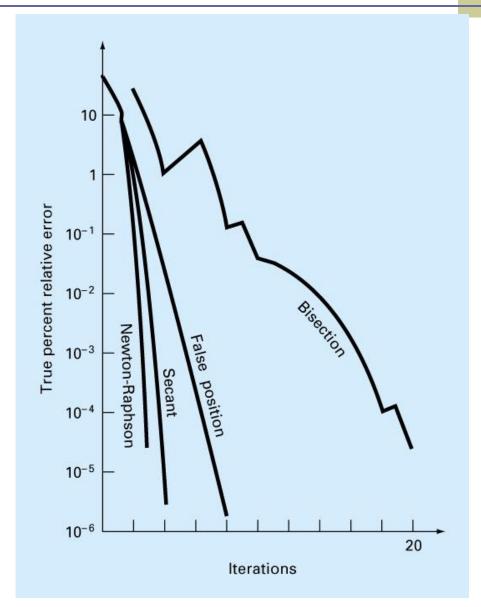
Secant method(II)

- Similar complexity to linear interpolation
 - Only update rule is different



- Faster convergence than linear interpolation
- More stable than Newton-Raphson method

Comparison: Convergence speed

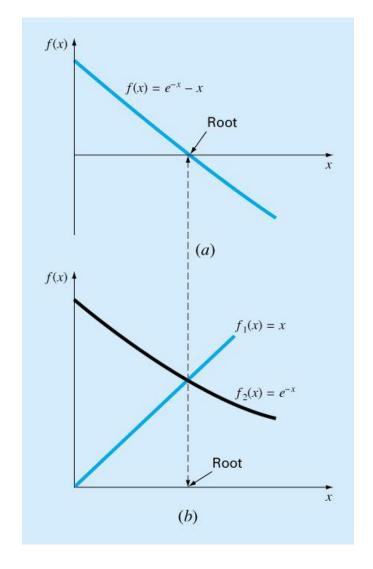


Fixed point iteration(I)

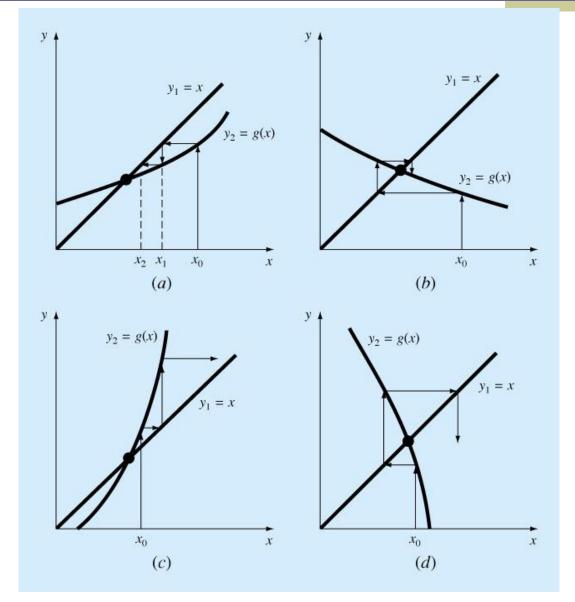
Principle

$$f(x)=0 \Rightarrow x=g(x)$$

- ❖ Iteration rule $x_{k+1}=g(x_k)$
- Convergent if contraction mapping

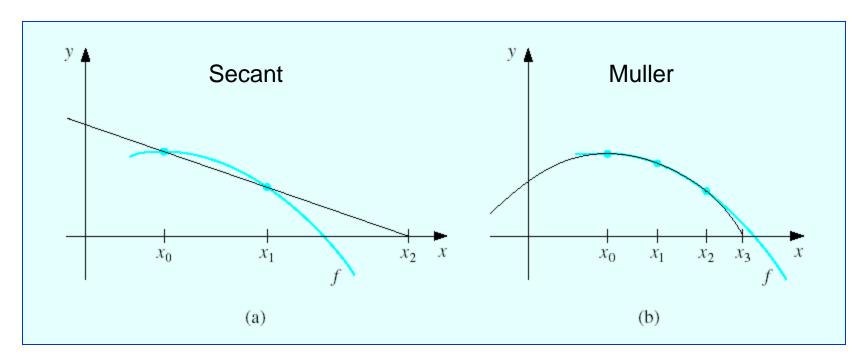


Fixed point iteration(II)



Muller method(I)

- Generalization of the Secant method
- Fast convergence



Muller method(II)

Algorithm

Given initial approximations p_0 , p_1 , and p_2 , generate

$$p_3 = p_2 - \frac{2c}{b + \operatorname{sgn}(b)\sqrt{b^2 - 4ac}},$$

where

$$c = f(p_2),$$

$$b = \frac{(p_0 - p_2)^2 [f(p_1) - f(p_2)] - (p_1 - p_2)^2 [f(p_0) - f(p_2)]}{(p_0 - p_2)(p_1 - p_2)(p_0 - p_1)},$$

and

$$a = \frac{(p_1 - p_2)[f(p_0) - f(p_2)] - (p_0 - p_2)[f(p_1) - f(p_2)]}{(p_0 - p_2)(p_1 - p_2)(p_0 - p_1)}.$$

Then continue the iteration, with p_1 , p_2 , and p_3 replacing p_0 , p_1 , and p_2 .

Error analysis

Linear convergence

$$|p - p_{n+1}| \le M|p - p_n|$$

Quadratic convergence

$$|p - p_{n+1}| \le M|p - p_n|^2$$

Example 1 Suppose that $\{p_n\}$ converges linearly to p = 0, $\{\hat{p}_n\}$ converges quadratically to p = 0, and the constant M = 0.5 is the same in each case. Then

Table 2.7		Sequence Bound	Quadratic Convergence Sequence Bound
	n	$p_n = (0.5)^n$	$\hat{p}_n = (0.5)^{2^n - 1}$
	1	5.0000×10^{-1}	5.0000×10^{-1}
	2	2.5000×10^{-1}	1.2500×10^{-1}

 1.2500×10^{-1} 6.2500×10^{-2}

 3.1250×10^{-2}

 1.5625×10^{-2} 7.8125×10^{-3}

 7.8125×10^{-3}

 3.0518×10^{-5} 4.6566×10^{-10}

 1.0842×10^{-19}

 5.8775×10^{-39}

Accelerating convergence

Aitken's Δ^2 method

If $\{p_n\}_{n=0}^{\infty}$ is a sequence that converges linearly to p, and if

$$q_n = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n},$$

then $\{q_n\}_{n=0}^{\infty}$ also converges to p, and, in general, more rapidly.

Example 2

The sequence $\{p_n\}_{n=1}^{\infty}$, where $p_n = \cos(1/n)$, converges linearly to p=1. The first few terms of the sequences $\{p_n\}_{n=1}^{\infty}$ and $\{q_n\}_{n=1}^{\infty}$ are given in Table 2.8. It certainly appears that $\{q_n\}_{n=1}^{\infty}$ converges more rapidly to p=1 than does $\{p_n\}_{n=1}^{\infty}$.

n	p_n	q_n
1	0.54030	0.96178
2	0.87758	0.98213
3	0.94496	0.98979
4	0.96891	0.99342
5	0.98007	0.99541
6	0.98614	
7	0.98981	

Rapid convergence!

Fail-safe methods

- Combination of Newton and Bisection
 - if(out of bound || small update by Newton)
 update by Bisection method
 - → rtsafe.c in NR in C
- Ridder's method (good performance)
 - Evaluating the function at the midpoint
 - Balancing efficiency and reliability
 - → zriddr.c in NR in C

Homework #2 (I)

[Due: 9/26]

- Programming: Find the roots of the Bessel function J_o in the interval [1.0, 10.0] using the following methods:
 - a) Bisection (rtbis.c)
 - b) Linear interpolation (rtflsp.c)
 - c) Secant (rtsec.c)
 - d) Newton-Raphson (rtnewt.c)
- Bessel functions can be found in Ch.6 of NR in C (bessj0.c, bessj1.c).
- For Newton methods, use the following property of the Bessel function:

$$\frac{dJ_0(x)}{dx} = -J_1(x)$$

- e) Newton with bracketing (rtsafe.c)
- Hint
 - First, use bracketing routine (zbrak.c).
 - Then, call proper routines in NR in C.
 - Set xacc=10⁻⁶ x
 - Use "pointer to function" to write succinct source codes

(Cont')

Homework #2 (II)

- Write source codes for Muller method (muller.c) and do the same job as above.
- Discuss the convergence speed of the methods.
- Solve one interesting nonlinear equation you want to solve using the routine of rtsafe.c in NR in C

