Numerical Analysis – Linear Equations(II)

Hanyang University

Jong-II Park

Singular Value Decomposition(SVD)

Why SVD?

- Gaussian Elim. and LU Decomposition fail to give satisfactory results for singular or numerically near singular matrices
- SVD can cope with over- or under-determined problems
- SVD constructs orthonormal basis vectors

What is SVD?

Any **MxN** matrix **A** whose number of rows **M** is greater than or equal to its number of columns **N**, can be written as the product of a **MxN** column-orthogonal matrix **U**, an **NxN** diagonal matrix **W** with positive or zero elements(the singular values), and the transpose of an **NxN** orthogonal matrix **V**:

$$A = U W V^T$$

Properties of SVD

Orthonormality

$$U^TU=| > U^{-1}=U^T$$

$$V^TV=| > V^{-1}=V^T$$

- Uniqueness
 - The decomposition can always be done, no matter how singular the matrix is, and it is almost unique.

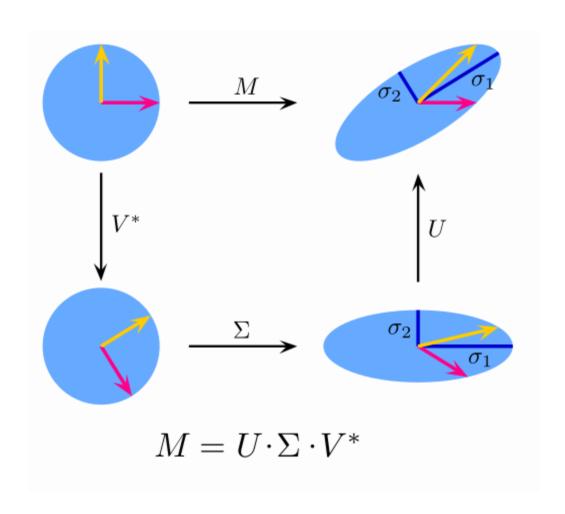
SVD of a square matrix

SVD of a Square Matrix

$$\mathbf{A}^{-1} = \mathbf{V} \cdot [\operatorname{diag} (1/w_j)] \cdot \mathbf{U}^T$$

- columns of U
 - > an orthonormal set of basis vectors
- \diamond columns of **V** whose corresponding w_j 's are zero
 - > an orthonormal basis for the nullspace

Interpretation of SVD



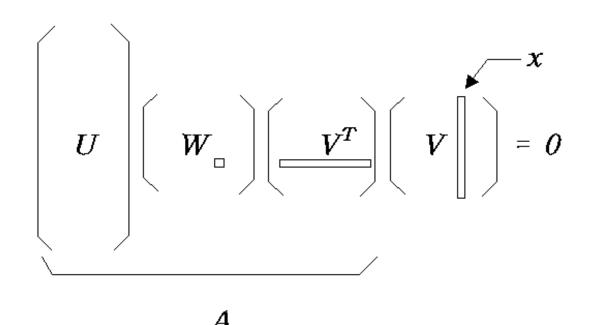
Reminding basic concept in linear algebra

Important Concept in Ax=b of order N

- Range: $\{y \mid y=Ax\}$ (subspace of b that can be reached by A)
- Rank: dimension of range
- Nullspace: $\{x \mid Ax=0\}$
- Nullity: dimension of nullspace
- -N = (rank) + (nullity)

Homogeneous equation

- ❖ Homegeneous equations (b=0) + A is singular
 - > Any column of V whose corresponding w_j is zero yields a solution



Nonhomogeneous equation

Nonhomegeneous eq. with singular A

$$\mathbf{x} = \mathbf{V} \cdot [\mathrm{diag}\ (1/w_j)] \cdot (\mathbf{U}^T \cdot \mathbf{b})$$
 where we replace $1/w_i$ by zero if w_i =0

- ※ The solution x obtained by this method is the solution vector of the smallest length.
- ※ If b is not in the range of A
 - \rightarrow SVD find the solution x in the least-square sense, i.e.
 - x which minimize r = |Ax-b|

SVD solution - concept

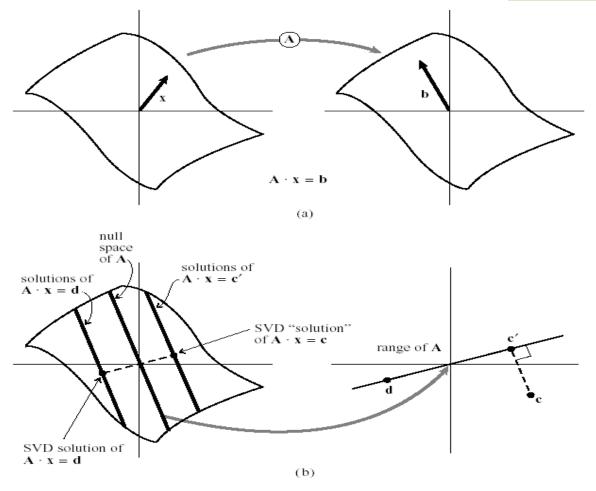
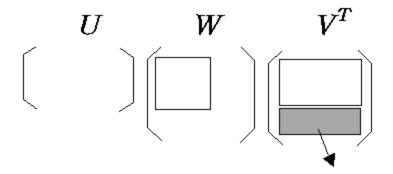


Figure 2.6.1. (a) A nonsingular matrix \mathbf{A} maps a vector space into one of the same dimension. The vector \mathbf{x} is mapped into \mathbf{b} , so that \mathbf{x} satisfies the equation $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$. (b) A singular matrix \mathbf{A} maps a vector space into one of lower dimensionality, here a plane into a line, called the "range" of \mathbf{A} . The "nullspace" of \mathbf{A} is mapped to zero. The solutions of $\mathbf{A} \cdot \mathbf{x} = \mathbf{d}$ consist of any one particular solution plus any vector in the nullspace, here forming a line parallel to the nullspace. Singular value decomposition (SVD) selects the particular solution closest to zero, as shown. The point \mathbf{c} lies outside of the range of \mathbf{A} , so $\mathbf{A} \cdot \mathbf{x} = \mathbf{c}$ has no solution. SVD finds the least-squares best compromise solution, namely a solution of $\mathbf{A} \cdot \mathbf{x} = \mathbf{c}'$, as shown.

SVD – under/over-determined problems

SVD for Fewer Equations than Unknowns



They span the solution space.

- SVD for More Equations than Unknowns
 - SVD yields the least-square solution
 - In general, non-singular

Applications of SVD

Applications

1. Constructing an orthonormal basis

- M-dimensional vector space
- Problem: Given N vectors,
 find an orthonormal basis
- Solution:

Columns of the matrix **U** are the desired orthonormal basis

2. Approximation of Matrices

$$A_{ij} = \sum_{k=1}^{N} w_k U_{ik} V_{jk}$$

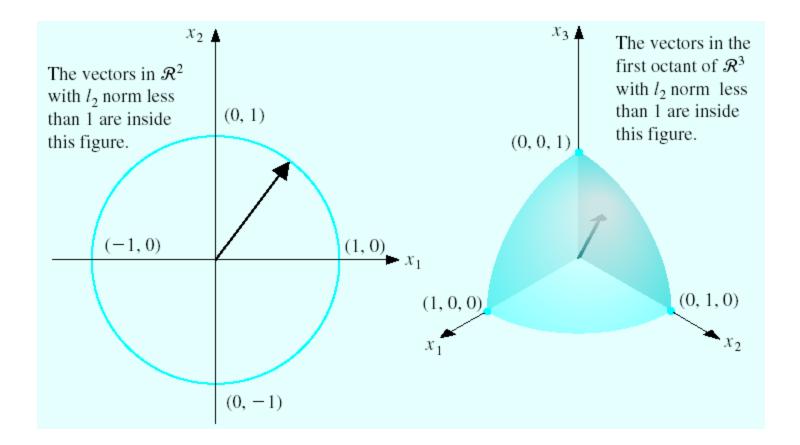
Vector norm

A vector norm on \mathbb{R}^n is a function, $\|\cdot\|$, from \mathbb{R}^n into \mathbb{R} with the following properties:

- (i) $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathcal{R}^n$,
- (ii) $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = (0, 0, ..., 0)^t \equiv \mathbf{0}$,
- (iii) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathcal{R}$ and $\mathbf{x} \in \mathcal{R}^n$,
- (iv) $\|x + y\| \le \|x\| + \|y\|$ for all $x, y \in \mathbb{R}^n$.

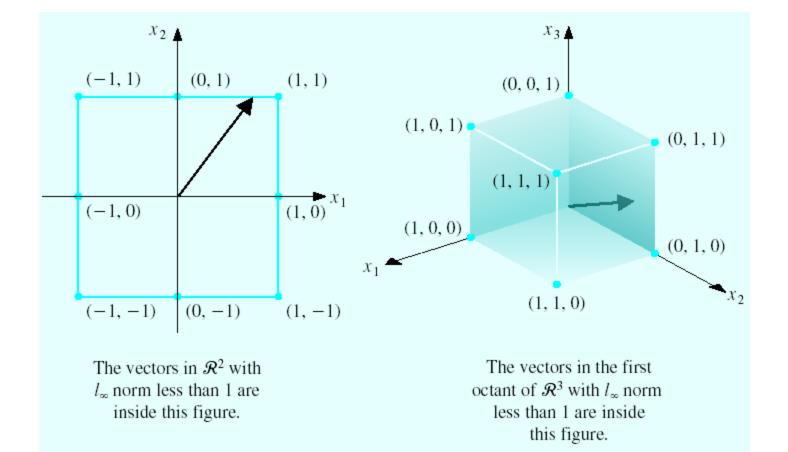
l₂ norm

$$\|\mathbf{x}\|_2 = \left\{ \sum_{i=1}^n x_i^2 \right\}^{1/2}$$



l_∞ norm

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$



Distance between vectors

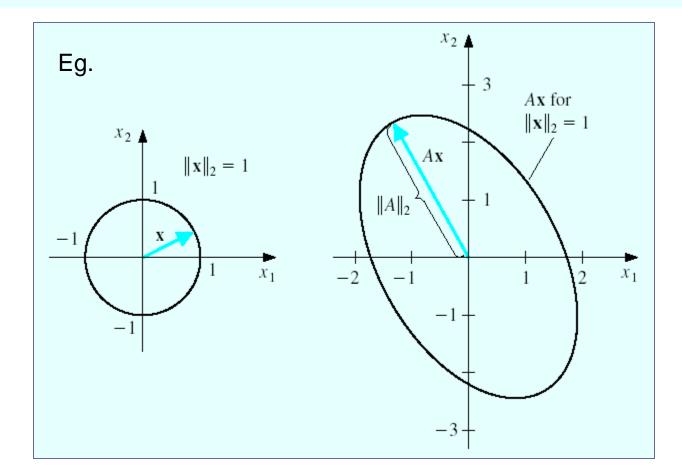
If $\mathbf{x} = (x_1, x_2, \dots, x_n)^t$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)^t$ are vectors in \mathcal{R}^n , the l_2 and l_{∞} distances between \mathbf{x} and \mathbf{y} are defined by

$$\|\mathbf{x} - \mathbf{y}\|_2 = \left\{ \sum_{i=1}^n (x_i - y_i)^2 \right\}^{1/2}$$
 and $\|\mathbf{x} - \mathbf{y}\|_{\infty} = \max_{1 \le i \le n} |x_i - y_i|.$

Natural matrix norm

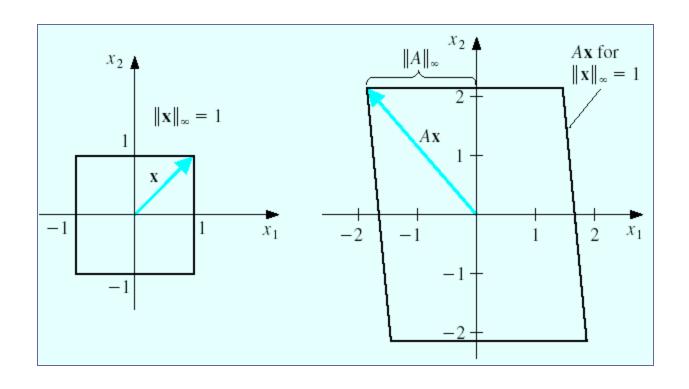
If $\|\cdot\|$ is a vector norm on \mathcal{R}^n , the natural matrix norm on the set of $n \times n$ matrices given by $\|\cdot\|$ is defined by

$$||A|| = \max_{\|\mathbf{x}\|=1} ||A\mathbf{x}||.$$

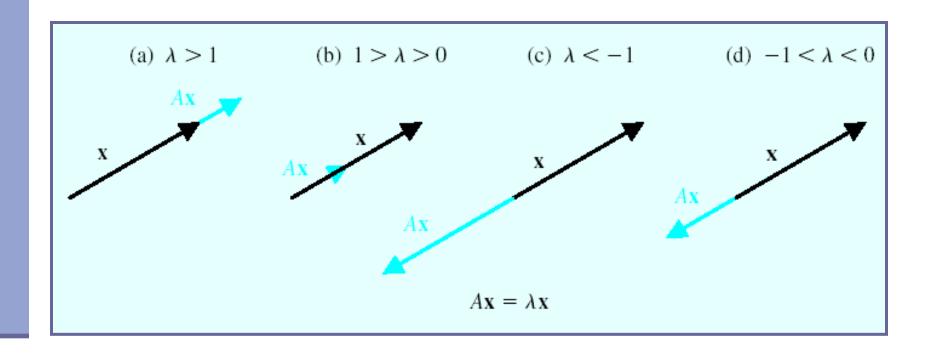


I_∞ norm of a matrix

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$



Eigenvalues and eigenvectors



^{*} To be discussed later in detail.

Spectral radius

$$\rho(A) = \max |\lambda|,$$

If A is an $n \times n$ matrix, then

(i)
$$||A||_2 = [\rho(A^t A)]^{1/2}$$
;

(ii) $\rho(A) \leq ||A||$ for any natural norm.

Convergent matrix equivalences

The following are equivalent statements:

- (i) A is a convergent matrix.
- (ii) $\lim_{n\to\infty} ||A^n|| = 0$, for some natural norm.
- (iii) $\lim_{n\to\infty} ||A^n|| = 0$, for all natural norms.
- (iv) $\rho(A) < 1$.
 - (v) $\lim_{n\to\infty} A^n \mathbf{x} = \mathbf{0}$, for every \mathbf{x} .

Convergence of a sequence

- An important connection between the eigen values of the matrix T and the expectation that the iterative method will converge
 - spectral radius

The sequence

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$$

converges to the unique solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ for any $\mathbf{x}^{(0)}$ in \mathcal{R}^n if and only if $\rho(T) < 1$.

Iterative Methods - Jacobi Iteration

$$Ax=b = \sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \quad (i=1,2,\dots,n)$$
If $a_{ii} \neq 0$,
$$x_{i} = \frac{1}{a_{ii}} \left\{ b_{i} - \left(\sum_{j=1}^{i-1} a_{ij} x_{j} + \sum_{j=i+1}^{n} a_{ij} x_{j} \right) \right\}$$

Jacobi Iteration

$$\begin{split} x_i^{(k)} &= \frac{1}{a_{ii}} \left\{ b_i - \left(\sum_{j=1}^{i-1} a_{ij} x_j^{(k-1)} + \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right) \right\} \\ &= x_i^{(k-1)} + \frac{1}{a_{ii}} \left\{ b_i - \sum_{j=1}^n a_{ij} x_j^{(k-1)} \right\} \\ &= x_i^{(k-1)} + \Delta x_i^{(k-1)} \end{split}$$

Jacobi Iteration

Initial guess

$$\mathbf{x}^{(0)} = [x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}]$$

Convergence Condition

The Jacobi iteration is convergent, irrespective of an initial guess, if the matrix **A** is diagonal-dominant:

$$|a_{ii}| \ge \sum_{j=1, j\neq i}^n |a_{ij}|$$

Eg. Jacobi iteration

The linear system $A\mathbf{x} = \mathbf{b}$ given by

E₁:
$$10x_1 - x_2 + 2x_3 = 6$$
,
E₂: $-x_1 + 11x_2 - x_3 + 3x_4 = 25$,
E₃: $2x_1 - x_2 + 10x_3 - x_4 = -11$,
E₄: $3x_2 - x_3 + 8x_4 = 15$

has solution $\mathbf{x} = (1, 2, -1, 1)^t$. To convert $A\mathbf{x} = \mathbf{b}$ to the form $\mathbf{x} = T\mathbf{x} + \mathbf{c}$, solve equation E_i for x_i obtaining

$$x_{1} = \frac{1}{10}x_{2} - \frac{1}{5}x_{3} + \frac{3}{5},$$

$$x_{2} = \frac{1}{11}x_{1} + \frac{1}{11}x_{3} - \frac{3}{11}x_{4} + \frac{25}{11},$$

$$x_{3} = -\frac{1}{5}x_{1} + \frac{1}{10}x_{2} + \frac{1}{10}x_{4} - \frac{11}{10},$$

$$x_{4} = -\frac{3}{8}x_{2} + \frac{1}{8}x_{3} + \frac{15}{8}.$$

Then $A\mathbf{x} = \mathbf{b}$ has the form $\mathbf{x} = T\mathbf{x} + \mathbf{c}$, with

$$T = \begin{bmatrix} 0 & \frac{1}{10} & -\frac{1}{5} & 0\\ \frac{1}{11} & 0 & \frac{1}{11} & -\frac{3}{11}\\ -\frac{1}{5} & \frac{1}{10} & 0 & \frac{1}{10}\\ 0 & -\frac{3}{8} & \frac{1}{8} & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{c} = \begin{bmatrix} \frac{3}{5}\\ \frac{25}{11}\\ -\frac{11}{10}\\ \frac{15}{8} \end{bmatrix}.$$

For an initial approximation, suppose $\mathbf{x}^{(0)} = (0, 0, 0, 0)^t$. Then $\mathbf{x}^{(1)}$ is given by

$$x_1^{(1)} = \frac{1}{10}x_2^{(0)} - \frac{1}{5}x_3^{(0)} + \frac{3}{5} = 0.6000,$$

$$x_2^{(1)} = \frac{1}{11}x_1^{(0)} + \frac{1}{11}x_3^{(0)} - \frac{3}{11}x_4^{(0)} + \frac{25}{11} = 2.2727,$$

$$x_3^{(1)} = -\frac{1}{5}x_1^{(0)} + \frac{1}{10}x_2^{(0)} + \frac{1}{10}x_4^{(0)} - \frac{11}{10} = -1.1000,$$

$$x_4^{(1)} = -\frac{3}{8}x_2^{(0)} + \frac{1}{8}x_3^{(0)} + \frac{15}{8} = 1.8750.$$

Additional iterates, $\mathbf{x}^{(k)} = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, x_4^{(k)})^t$, are generated in a similar manner and are presented in Table 7.1. The decision to stop after 10 iterations was based on the criterion

$$\|\mathbf{x}^{(10)} - \mathbf{x}^{(9)}\|_{\infty} = 8.0 \times 10^{-4} < 10^{-3}.$$

Since we know that $\mathbf{x} = (1, 2, -1, 1)^t$, we have $\|\mathbf{x}^{(10)} - \mathbf{x}\|_{\infty} \approx 0.0002$.

Gauss-Seidel Iteration

- Idea
 - \diamond Utilize recently updated x_i
- Iteration formula

$$\begin{split} x_i^{(k)} &= \frac{1}{a_{ii}} \left\{ b_i - \left(\sum_{j=1}^{i-1} a_{ij} x_j^{(k)} + \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right) \right\} \\ &= x_i^{(k-1)} + \frac{1}{a_{ii}} \left\{ b_i - \left(\sum_{j=1}^{i-1} a_{ij} x_j^{(k)} + \sum_{j=i}^n a_{ij} x_j^{(k-1)} \right) \right\} \\ &= x_i^{(k-1)} + \Delta x_i^{(k-1)} \end{split}$$

- Convergence Condition
 - The same as the Jacobi iteration
- Advantage over Jacobi iteration
 - Fast convergence

Eg. Gauss-Seidel iteration

In Example 1 we used the Jacobi method to solve the linear system

Using the Gauss-Seidel method as described in Eq. (7.2) gives the equations

$$\begin{split} x_1^{(k)} &= & \frac{1}{10} x_2^{(k-1)} - \frac{1}{5} x_3^{(k-1)} &+ \frac{3}{5}, \\ x_2^{(k)} &= \frac{1}{11} x_1^{(k)} &+ \frac{1}{11} x_3^{(k-1)} - \frac{3}{11} x_4^{(k-1)} + \frac{25}{11}, \\ x_3^{(k)} &= -\frac{1}{5} x_1^{(k)} + \frac{1}{10} x_2^{(k)} &+ \frac{1}{10} x_4^{(k-1)} - \frac{11}{10}, \\ x_4^{(k)} &= & -\frac{3}{8} x_2^{(k)} &+ \frac{1}{8} x_3^{(k)} &+ \frac{15}{8}. \end{split}$$

Letting $\mathbf{x}^{(0)} = (0, 0, 0, 0)^t$, we generate the Gauss-Seidel iterates in Table 7.2. Since

$$\|\mathbf{x}^{(5)} - \mathbf{x}^{(4)}\|_{\infty} = 0.0008 < 10^{-3},$$

x⁽⁵⁾ is accepted as a reasonable approximation to the solution. Note that Jacobi's method in Example 1 required twice as many iterations for the same accuracy.

Jacobi vs. Gauss-Seidel

Comparison: Eg. 1 vs. Eg. 2

Eg. 1 Jacobi

k	0	1	2	3	4	5	6	7	8	9	10
$x_1^{(k)}$	0.000	0.6000	1.0473	0.9326	1.0152	0.9890	1.0032	0.9981	1.0006	0.9997	1.0001
		2.2727									
$\chi_3^{(k)}$	0.0000	-1.1000	-0.8052	-1.0493	-0.9681	-1.0103	-0.9945	-1.0020	-0.9990	-1.0004	-0.9998
$\chi_4^{(k)}$	0.0000	1.8750	0.8852	1.1309	0.9739	1.0214	0.9944	1.0036	0.9989	1.0006	0.9998

Eg. 2 Gauss-Seidel

Faster convergence

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.6000	1.030	1.0065	1.0009	1.0001
$x_{2}^{(k)}$	0.0000	2.3272	2.037	2.0036	2.0003	2.0000
$x_3^{(k)}$	0.0000	-0.9873	-1.014	-1.0025	-1.0003	-1.0000
$x_4^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000

Variation of Gauss-Seidel Iteration

$$x_i^{(k)} = x_i^{(k-1)} + w \Delta x_i^{(k-1)}$$

- Successive Over Relaxation(SOR)
 - **❖** 1< w<2
 - fast convergence
 - Well-suited for linear problem
- Successive Under Relaxation(SUR)
 - **⋄** 0 < w < 1
 - slow convergence
 - stable
 - Well-suited for nonlinear problem

Eg. Gauss-Seidel vs. SOR

The linear system $A\mathbf{x} = \mathbf{b}$ given by

$$4x_1 + 3x_2 = 24,$$

 $3x_1 + 4x_2 - x_3 = 30,$
 $-x_2 + 4x_3 = -24$

has the solution $(3, 4, -5)^t$. The Gauss-Seidel method and the SOR method with $\omega = 1.25$ will be used to solve this system, using $\mathbf{x}^{(0)} = (1, 1, 1)^t$ for both methods. For each k = 1, $2, \ldots$, the equations for the Gauss-Seidel method are

$$x_1^{(k)} = -0.75x_2^{(k-1)} + 6,$$

$$x_2^{(k)} = -0.75x_1^{(k)} + 0.25x_3^{(k-1)} + 7.5,$$

$$x_3^{(k)} = 0.25x_2^{(k)} - 6,$$

and the equations for the SOR method with $\omega = 1.25$ are

$$\begin{aligned} x_1^{(k)} &= -0.25x_1^{(k-1)} - 0.9375x_2^{(k-1)} + 7.5, \\ x_2^{(k)} &= -0.9375x_1^{(k)} - 0.25x_2^{(k-1)} + 0.3125x_3^{(k-1)} + 9.375, \\ x_3^{(k)} &= 0.3125x_2^{(k)} - 0.25x_3^{(k-1)} - 7.5. \end{aligned}$$

The first seven iterates for each method are listed in Tables 7.3 and 7.4. To be accurate to seven decimal places, the <u>Gauss-Seidel method required 34 iterations</u>, as opposed to only 14 iterations for the SOR method with $\omega = 1.25$.

(cont.)

Table 7.3	Gauss-Seidel
-----------	--------------

k	0	1	2	3	4	5	6	7
$x_1^{(k)}$	1	5.250000	3.1406250	3.0878906	3.0549316	3.0343323	3.0214577	3.0134110
$x_1^{(k)}$	1	3.812500	3.8828125	3.9267578	3.9542236	3.9713898	3.9821186	3.9888241
$x_1^{(k)}$	1	-5.046875	-5.0292969	-5.0183105	-5.0114441	-5.0071526	-5.0044703	-5.0027940

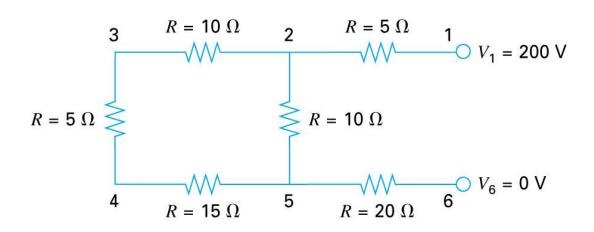
Faster convergence

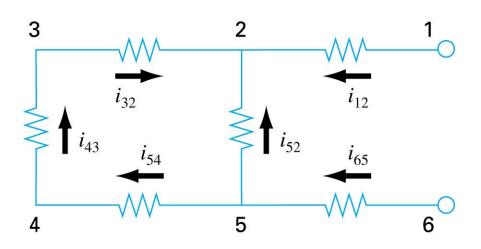
Table 7.4 SOR with $\omega = 1.25$

\boldsymbol{k}	0	1	2	3	4	5	6	7
$x_1^{(k)}$	1	6.312500	2.6223145	3.1333027	2.9570512	3.0037211	2.9963276	3.0000498
$x_{2}^{(k)}$	1	3.5195313	3.9585266	4.0102646	4.0074838	4.0029250	4.0009262	4.0002586
$x_{3}^{(k)}$	1	-6.6501465	-4.6004238	-5.0966863	-4.9734897	-5.0057135	-4.9982822	-5.0003486

Application: Circuit analysis

Kirchhoff's current and voltage law





Current rule: 4 nodes Voltage rule: 2 meshes

6 unknowns, 6 equations

Given these assumptions, Kirchhoff's current rule is applied at each node to yield

$$i_{12} + i_{52} + i_{32} = 0$$

 $i_{65} - i_{52} - i_{54} = 0$
 $i_{43} - i_{32} = 0$
 $i_{54} - i_{43} = 0$

Application of the voltage rule to each of the two loops gives

$$-i_{54}R_{54} - i_{43}R_{43} - i_{32}R_{32} + i_{52}R_{52} = 0$$
$$-i_{65}R_{65} - i_{52}R_{52} + i_{12}R_{12} - 200 = 0$$

or, substituting the resistances from Fig. 12.8 and bringing constants to the right-hand side,

$$-15i_{54} - 5i_{43} - 10i_{32} + 10i_{52} = 0$$
$$-20i_{65} - 10i_{52} + 5i_{12} = 200$$

Therefore, the problem amounts to solving the following set of six equations with six unknown currents:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 10 & -10 & 0 & -15 & -5 \\ 5 & -10 & 0 & -20 & 0 & 0 \end{bmatrix} \begin{bmatrix} i_{12} \\ i_{52} \\ i_{52} \\ i_{32} \\ i_{65} \\ i_{54} \\ i_{43} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 200 \end{bmatrix}$$