Introduction to Microcontroller

Lecture 1

Yeongpil Cho

Hanyang University

About me

- 조영필 (Yeongpil Cho)
 - A system security researcher
 - Designing new SW/HW techniques for better security
 - OS kernels
 - Hypervisor
 - Firmware
 - Applications
 - etc.

Course information

Goal

- Microcontrollers, widely found in embedded systems, are tiny computer systems, consisting of a CPU, memory and peripherals.
- You will have a good understanding of microcontrollers and furthermore general computer systems.

Class time & location

- Theoretical classes
 - Mon. 11 am @ ITBT 508
- Practical classes
 - Mon. 11 am @ ITBT 508

Course materials

- (main) Lecture notes
- (auxiliary) Embedded Systems with ARM Cortex-M
 Microcontrollers in Assembly Language and C: Third Edition

Course information

Grading policy

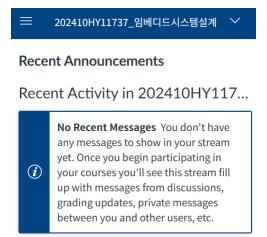
■ Midterm: 20%

• Final: 20%

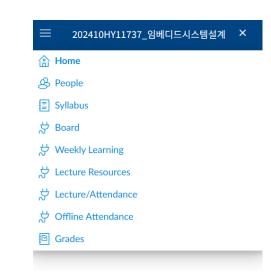
Lab assignments: 20%

■ Term project: 30%

• Attentance: 10%


- -3 tardiness $\rightarrow 1$ absence
- 1/3 or more absence → grade 'F'
- Using the Smart Attendance System
- After the course registration modification period (9/6)

Office hour


- Make an appointment at any time
 - ypcho@hanyang.ac.kr
- Location: ITBT 1208
- TA
 - Sangmin Lee (이상민) <u>ozoesm@hanyang.ac.kr</u>
 - Wonjun Ma (마원준) <u>mawj09@hanyang.ac.kr</u>

① Visit our course website through "learning.hanyang.ac.kr"

course name: 20xxxxxxxxx_마이크로프로세서응용

② Press the header to expand the menu and click the "Offline Attendance"

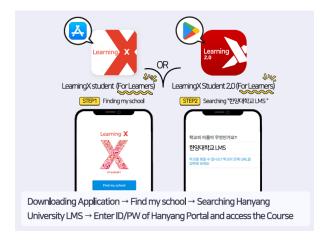
3 Entering the authentication number to check your attendance

Smart attendance is in progress.

Please check attendance by entering the verification number.

321차시 - 03/05(화) 방은광 / Bang Eunkwang

Remaining time: ③ 04:06

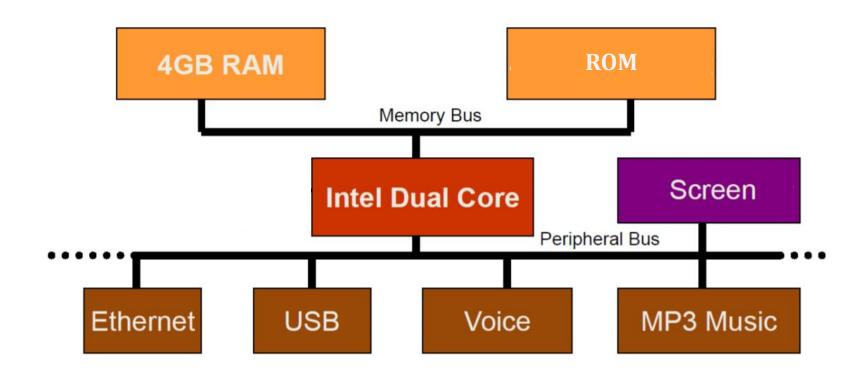

Authentication Number

8671

Submit attendance

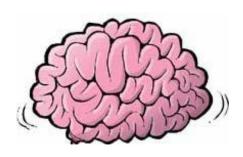
Please note that if you detect cheating, you may be at a disadvantage in your attendance score.

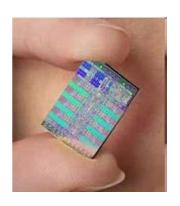
You may try the mobile app, "Learning X Student"



Tentative Syllabus (Theory Classes)

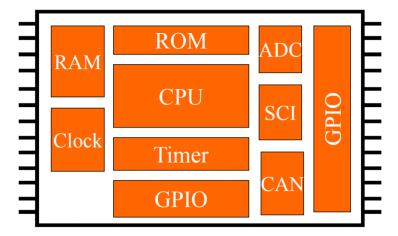
Week	Date	Lectures
1	9/1	Course Introduction
2	9/8	Basics in Computer Architecture
3	9/15	Introduction to ARM Architecture & Overview of Cortex-M processors
4	9/22	Memory system in Cortex-M processors
5	9/29	ARM Assembly Language I
6	10/6	"Chuseok". No class
7	10/13	ARM Assembly Language II (Online Course)
8	10/20	Midterm Exam
9	10/27	ARM Assembly Language III
10	11/3	Cortex-M's subroutine mechanism
11	11/10	Cortex-M's interrupt mechanism I
12	11/17	Cortex-M's interrupt mechanism II
13	11/24	Cortex-M's timer and GPIO
14	12/1	Final Exam
15	12/8	Term Project
16	12/15	Term Project 6


What is a microcontroller?


General Structure of Computer

What is Microcontroller?

- Microprocessor vs. Microcontroller
 - Microprocessor: A CPU on a single integrated chip (IC)
 - The brain of computer
 - E.g.:
 - Intel/AMD's x86
 - ARM's Cortex
 - Contains no RAM, no ROM, no I/O devices



What is Microcontroller?

- Microprocessor vs. Microcontroller
 - Microcontroller: A CPU, and RAM, ROM, I/O devices, and timer on a single chip (Also called MCU)
 - "Computer on a chip"
 - Also called MCU (Micro-Controller Unit)
 - Usually not as powerful as a general-purpose microprocessor
 - But, application specific
 - The operation software ("firmware") is embedded in hardware (ROM)
 - So, low power consumption, small size, low cost

Applications

- Applications of Microcontroller
 - Home
 - Alarm clock, Wireless router ...
 - Office
 - Scanner, Printer, Fax machine, Copier,, ...
 - Industry
 - Machinery, Equipment, Instrumentation, Rocket, ...
- Microcontroller is everywhere, particularly in embedded systems!

Course Contents

- What are we going to learn in this course?
 - We will explore Microcontrollers based on ARM Cortex-M processors
 - Theory classes
 - What are inside a microcontroller?
 - The basic structure of a microcontroller
 - How to program a microcontroller (Firmware)?
 - Assembly language
 - C language
 - How to build a system with a microcontroller?
 - I/O devices
 - Hardware connection
 - Practice Classes
 - Deal with various features of a Cortex-M based microcontroller
 - Developing a robot tracing lines with calibration capability