p1. Project Overview

2025 Fall
Hunjun Lee
Hanyang University

Project Overview

Project goal

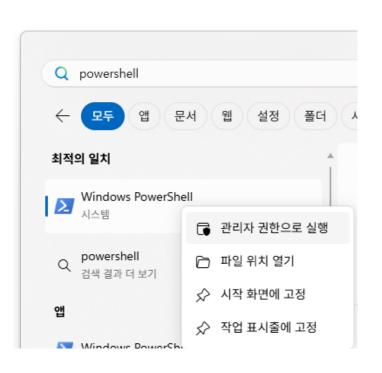
- We will implement C-Minus compiler

Project environments

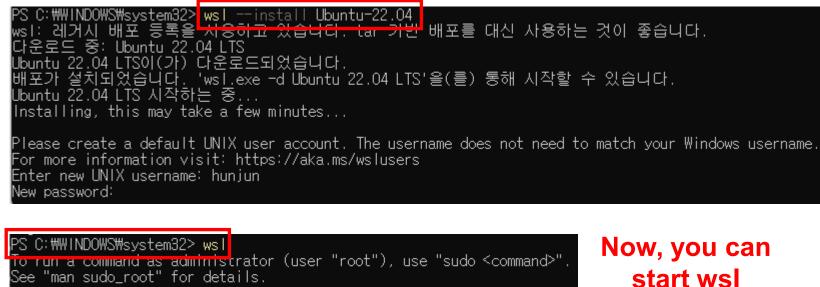
- C-Minus compiler implementation using C
- You should use docker for the project setup

Docker

 It is a package of my target program (including code, libraries, dependencies, and even OS tools)


 It allows you to use the "exactly" same environment as my grading environment

- You are in charge of deductions for not using Docker
 - There are potential setup issues (I had tons of grading issues last year)



Docker Setup (Windows)

You should setup Windows Subsystem for Linux (WSL) first

Recommeded

You can copy files from Windows through /mnt/...

start wsl

ounjun@DESKTOP-CPE40<mark>0</mark>V:/mnt/c/WINDOWS/system32**\$**-

Docker Setup (Windows)

Install docker on WSL

- sudo apt-get update
- -sudo apt install docker.io
- -sudo systemctl start docker
- -sudo systemctl enable docker

Add yourself to docker group

- -sudo usermod -aG docker [user id]
- -exit
- -wsl --shutdown
- -wsl

Docker Setup (Mac)

- Install docker directly on Mac
 - -brew install --cask docker

- Check for installation
 - -docker --version

Project Setup - 1

 Make a working directory on your home folder (Other places are fine..., but just make sure to be consistent)

```
-mkdir ~/work
```

- Copy Dockerfile and default project files on your working directory (I'll upload them to the LMS)
 - Make sure you have the tar.gz file and Dockerfile on the work directory

```
hunjun@DESKTOP-CPE4QGV:~/work$ cp /mnt/c/Users/user/Downloads/Dockerfile .
hunjun@DESKTOP-CPE4QGV:~/work$ cp /mnt/c/Users/user/Downloads/skeleton.tar.gz .
hunjun@DESKTOP-CPE4QGV:~/work$ Is
Dockerfile skeleton.tar.gz
```


Project Setup - 2

- Build the docker image using the following command
 - -cd ~/work
 - -docker build -t cs-compiler-hw:1.0 .

- Make a docker container using the generated docker image
 - -docker run --name compiler2025 --rm -it -v "\$PWD":/work -w /work cs-compiler-hw:1.0
 - → This will generate docker container named compiler 2025
- Now unzip the project folder and you are ready to go!
 - -tar -xvf skeleton.tar.gz

Project Overview

Scanner

Parser

Semantic Analysis

- Code Generation
 - We will not do code generation

Grading

Evaluation Items

- Compilation (Success / Failure): 20%
- Correctness check (several testcases): 70%
- Report: 10%

Cheating

- There are tons of open-sources on the web (it is a popular compiler project). But do not use the open-source files. If you are caught cheating, the entire project score will be zero and there can be additional penalties.

Grading

- Submission Format (very important)
 - Note #1: You are not allowed to modify the provided Makefile (I'll provide a new Makefile for each project)
 - Note #2: Do not install additional packages to complete the project (I've already installed all the required libraries in the docker)
 - Note #3: Submit only necessary files
 - Do not submit temporary or redundant files (e.g., scan_temp.c, temp/main.c, test/main.c)
 - Note #4: Obey the submission file format: [Student No].zip
 - The only exception is when you submit multiple times
 - [Student No] (1).zip, [Student No] (2).zip, ...

You cannot make a claim for getting 0 score if you do not obey the rules above -> No exception

QnA Board

I made a QnA board at the LMS

 There are three QnA boards (one for each project) → you can upload any question to the board