# Review 4-1 * Hajin Ju, 2024062806 ## Problem 1 Show that the solution of $T(n) = 2T(\lfloor n / 2 \rfloor) + n $ is $O(n \lg n)$ by the substitution method. (Show the inductive step only.) ### Solution 1 * inductive step $$T(n) \leq c n \lg n, \quad (\text{for some}\; c > 0,\, n > n_0)$$ We can assume the hypothesis($T(n) = O(n\lg n)$) holds for all positive int smaller than $n$. then, $$T(\lfloor n / 2 \rfloor) \leq c \lfloor n / 2 \rfloor \lg {\lfloor n / 2 \rfloor} \leq c (n / 2) \lg ( n / 2)\\= c(n/2)(\lg n - \lg 2)$$ $$\begin{align*} T(n) &= 2T(\lfloor n / 2 \rfloor) + n \leq cn(\lg n - \lg 2) + n\\ &=cn\lg n - cn \lg 2 + n\\ &=cn \lg - cn + n\\ &\leq cn\lg n \end{align*}$$ therefore, $T(n) = O(n \lg n)$ ## Problem 2 Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n) = 3T(\lfloor n / 4 \rfloor) + \theta(n^2)$. ### Solution 2 ```mermaid flowchart TD A["$$T(n):\;cn^2$$"] --> B1["$$T(n/4):\;cn^2/16$$"]; A --> B2["$$T(n/4):\;cn^2/16$$"]; A --> B3["$$T(n/4):\;cn^2/16$$"]; subgraph L0[ ] A end subgraph L1[ ] B1 B2 B3 end ``` * level 0 * $cn^2$ * level 1 * $\frac{3}{16}cn^2$ * level $k$ * $(\frac{3}{16})^k cn^2$ * level $\log_4 n$ * $n^{\log_4 3}$ therefore, total cost is $$\begin{align*} T(n) &= \sum^{\log_4 n - 1}_{i = 0}(\frac{3}{16})^i cn^2 + \Theta(n^{\log_4 3})\\ &< \sum^{\infty}_{i = 0}(\frac{3}{16})^i cn^2 + \Theta(n^{\log_4 3})\\ &=\frac{16}{13}cn^2 +\Theta(n^{\log_4 3}) = O(n^2) \end{align*} $$