# Review 4-2 * Hajin Ju, 2024062806 ## Problem 1 Guess the solution to the recurrence $T(n) = T(n/3) + T(2n/3) + cn$, where $c$ is constant, is $\Theta(n\lg n) by applealing to a recursion tree.$ ### Solution 1 * level 0 $\Sigma = cn$ * level 1 $\Sigma = cn/3 + 2cn/3 = cn$ * level 2 $\Sigma = cn/9 + 2cn/9 + 2cn/9 + 4cn/9 = cn$ * level k $\Sigma = cn$ * level h $\Sigma = cn$ The shortest depth $n\to 1$ is $h = \lg_{3/2}{n}$ The longest depth $n\to 1$ is $h = \lg_{3}{n}$ so $T(n) = \text{depth} * cn$ and $cn \lg_{3/2}{n} \leq T(n) \leq cn \lg_{3}{n} $ therefore $T(n) = \Theta(n\lg n)$