Review 1

1. Fill in the blank entries when the numbers are sorted by insertion sort in non-decreasing order.

7	4	3	6	8	1	2
7	4	3	6	8	1	2
4	7					

2. Fill in the blanks with proper number of iterations.

INSERTION-SORT(A)	cost	number of iterations
for $j = 2$ to n	c_1	
key = A[j]	C_2	
i = j - 1	<i>C</i> ₄	
while $i > 0$ and $A[i] > key$	<i>C</i> ₅	
A[i + 1] = A[i]	c_6	
i = i - 1	<i>C</i> ₇	
A[i + 1] = key	C8	

 t_j : The number of executions of the while loop test for j.

- 3. What is the running time of insertion sort when the input size is n?
- (a) best case: $\theta()$, $t_j =$
- (b) worst case: $\theta()$, $t_j =$