Growth of Functions

Heejin Park

Hanyang University

Contents

- Asymptotic notation
 - Θ-notation
 - *O*-notation
 - Ω -notation

• $f(n) = \Theta(g(n)) \approx f(n) = g(n)$ in degree.

- $3n^2 + 2n 1 = \Theta(n^2)$
- $3n-1=\Theta(n)$
- $3n-1\neq\Theta(n^2)$

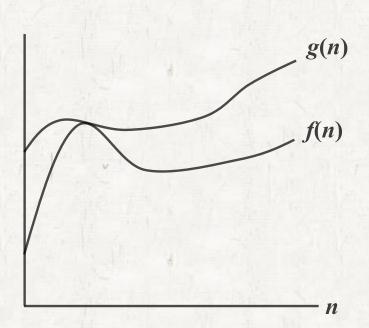
• $f(n) = O(g(n)) \approx f(n) \leq g(n)$ in degree.

- $3n^2 + 2n 1 = O(n^2)$
- 3n-1=O(n)
- $3n-1=O(n^2)$

• $f(n) = \Omega(g(n)) \approx f(n) \ge g(n)$ in degree.

- $3n-1=\Omega(n)$
- $\bullet \quad 3n^2 1 = \Omega(n)$

- Upper bound
 - \circ g(n) is an upper bound of f(n).

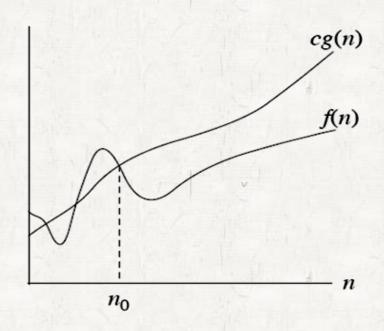


 \circ g(n) is an asymptotic upper bound of f(n).

$$o f(n) = O(g(n))$$

There exist positive constants c and n_0 such that

$$0 \le f(n) \le cg(n)$$
 for all $n \ge n_0$.



Example

$$3n+1 = \mathbf{O}(n^2)$$

- Show there are c and n_0 such that $3n+1 \le cn^2$ for all $n \ge n_0$.
- Dividing by n^2 yields $\frac{3}{n} + \frac{1}{n^2} \le c$.
- The inequality holds for any $n \ge 1$ $(n_0 = 1)$ and c = 4.

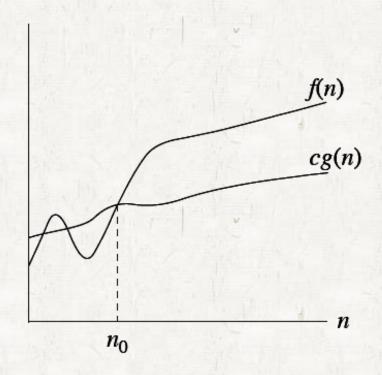
Ω -notation

Asymptotic lower bound

$$o f(n) = \Omega(g(n))$$

There exist positive constants c and n_0 such that

$$0 \le cg(n) \le f(n)$$
 for all $n \ge n_0$.



Ω -notation

Example

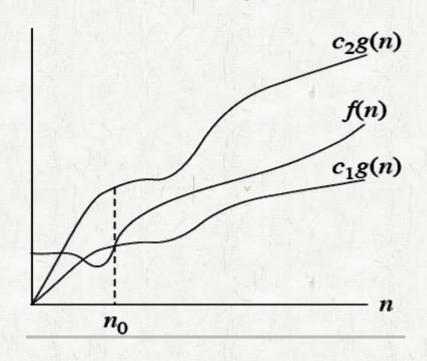
$$3n^2 - 4n + 1 = \Omega(n)$$

- Show there are c and n_0 such that $3n^2 4n + 1 \ge cn$ for all $n \ge n_0$.
- Dividing by *n* yields $3n-4+\frac{1}{n} \ge c$.
- The inequality holds for any $n \ge 2$ $(n_0 = 2)$ and c = 2.

Asymptotically tight bound

$$o f(n) = \Theta(g(n))$$

there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.



Θ-notation

Example

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

To show there exist positive constants c_1 , c_2 and n_0 such that

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2 \text{ for all } n \ge n_0.$$

Dividing by
$$n^2$$
 yields $c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$.

Θ-notation

Example

$$|c_1| \le \frac{1}{2} - \frac{3}{n} \le c_2.$$

- The right-hand inequality holds for $n \ge 1$ by choosing $c_2 \ge 1/2$.
- The left-hand inequality holds for $n \ge 7$ by choosing $c_1 \le 1/14$.
- Thus, by choosing $c_1 = 1/14$, $c_2 = 1/2$, and $n_0 = 7$,

we can verify that
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

Example

- Consider any quadratic function $f(n) = an^2 + bn + c$, where a, b, and c are constants and a > 0.
- Throwing away the lower-order terms and ignoring the constant yields $f(n) = \Theta(n^2)$.
- The reader may verify that $0 \le c_1 n^2 \le an^2 + bn + c \le c_2 n^2$ for all $n \ge n_0$. (Self-study)
- In general, for any polynomial $p(n) = \sum_{i=0}^{d} a_i n^i$ where the a_i are constants and $a_d > 0$, we have $p(n) = \Theta(n^d)$.

Examples

- Insertion sort
 - $O(n^2)$, $\Omega(n)$
- Selection sort
 - \bullet $\Theta(n^2)$
- Merge sort
 - $\Theta(n \lg n)$
- Binary search
 - $O(\lg n)$, $\Omega(1)$

Analogy

- $f(n) = \Theta(g(n)) \approx f(n) = g(n)$ in degree.
- $f(n) = O(g(n)) \approx f(n) \leq g(n)$ in degree.
- $f(n) = \Omega(g(n)) \approx f(n) \ge g(n)$ in degree.
- $f(n) = o(g(n)) \approx f(n) < g(n)$ in degree.
- $f(n) = \omega(g(n)) \approx f(n) > g(n)$ in degree.

Comparison of functions

- Comparison of functions
 - Transitivity
 - Reflexivity
 - Symmetry
 - Transpose symmetry

Comparison of functions

Comparison of functions

- Transitivity $(=, \leq, \geq, <, >)$
- Reflexivity $(=, \leq, \geq)$
- Symmetry (=)
- Transpose symmetry $(\le \leftrightarrow \ge, < \leftrightarrow >)$

Transitivity

- Transitivity $(=, \leq, \geq, <, >)$
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$,
 - f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)),
 - $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$,
 - f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)),
 - $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.

Reflexivity

- Reflexivity $(=, \leq, \geq)$
 - $f(n) = \Theta(f(n))$
 - f(n) = O(f(n))
 - $f(n) = \Omega(f(n))$

Symmetry and transpose symmetry

- **Symmetry** (=)
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.
- Transpose symmetry $(\leq \leftrightarrow \geq, < \leftrightarrow >)$
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$,
 - f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$.

Comparison of functions

Trichotomy

- For any two real numbers a and b, exactly one of the following must hold: a < b, a = b, a > b.
- That is, any two numbers are comparable.
- Are any two functions asymptotically comparable?
 - Is it possible $f(n) \neq O(g(n))$ and $f(n) \neq \Omega(g(n))$?
 - n and $n^{1+\sin n}$

Self-study

- Exercise 3.1-1
 - Show $\max(f(n), g(n)) = \Theta(f(n) + g(n))$
- Exercise 3.1-4
 - Is $2^{n+1} = O(2^n)$?
 - Is $2^{2n} = O(2^n)$?
- Problem 3-2 for O, Θ , and Ω .
 - Use $\lg(n!) = \Theta(n \lg n)$