migrate file format
This commit is contained in:
68
reviews/R4a.md
Normal file
68
reviews/R4a.md
Normal file
@@ -0,0 +1,68 @@
|
||||
# Review 4-1
|
||||
|
||||
* Hajin Ju, 2024062806
|
||||
|
||||
## Problem 1
|
||||
|
||||
Show that the solution of $T(n) = 2T(\lfloor n / 2 \rfloor) + n $ is $O(n \lg n)$ by the substitution method. (Show the inductive step only.)
|
||||
|
||||
### Solution 1
|
||||
|
||||
* inductive step
|
||||
|
||||
$$T(n) \leq c n \lg n, \quad (\text{for some}\; c > 0,\, n > n_0)$$
|
||||
|
||||
We can assume the hypothesis($T(n) = O(n\lg n)$) holds for all positive int smaller than $n$.
|
||||
then,
|
||||
|
||||
$$T(\lfloor n / 2 \rfloor) \leq c \lfloor n / 2 \rfloor \lg {\lfloor n / 2 \rfloor} \leq c (n / 2) \lg ( n / 2)\\= c(n/2)(\lg n - \lg 2)$$
|
||||
|
||||
$$\begin{align*}
|
||||
T(n) &= 2T(\lfloor n / 2 \rfloor) + n \leq cn(\lg n - \lg 2) + n\\
|
||||
&=cn\lg n - cn \lg 2 + n\\
|
||||
&=cn \lg - cn + n\\
|
||||
&\leq cn\lg n
|
||||
\end{align*}$$
|
||||
|
||||
therefore, $T(n) = O(n \lg n)$
|
||||
|
||||
## Problem 2
|
||||
|
||||
Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n) = 3T(\lfloor n / 4 \rfloor) + \theta(n^2)$.
|
||||
|
||||
### Solution 2
|
||||
```mermaid
|
||||
flowchart TD
|
||||
A["$$T(n):\;cn^2$$"] --> B1["$$T(n/4):\;cn^2/16$$"];
|
||||
A --> B2["$$T(n/4):\;cn^2/16$$"];
|
||||
A --> B3["$$T(n/4):\;cn^2/16$$"];
|
||||
|
||||
subgraph L0[ ]
|
||||
A
|
||||
end
|
||||
|
||||
subgraph L1[ ]
|
||||
B1
|
||||
B2
|
||||
B3
|
||||
end
|
||||
```
|
||||
|
||||
* level 0
|
||||
* $cn^2$
|
||||
* level 1
|
||||
* $\frac{3}{16}cn^2$
|
||||
* level $k$
|
||||
* $(\frac{3}{16})^k cn^2$
|
||||
* level $\log_4 n$
|
||||
* $n^{\log_4 3}$
|
||||
|
||||
|
||||
therefore, total cost is
|
||||
|
||||
$$\begin{align*}
|
||||
T(n) &= \sum^{\log_4 n - 1}_{i = 0}(\frac{3}{16})^i cn^2 + \Theta(n^{\log_4 3})\\
|
||||
&< \sum^{\infty}_{i = 0}(\frac{3}{16})^i cn^2 + \Theta(n^{\log_4 3})\\
|
||||
&=\frac{16}{13}cn^2 +\Theta(n^{\log_4 3}) = O(n^2)
|
||||
\end{align*}
|
||||
$$
|
||||
Reference in New Issue
Block a user