{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "129d4b8c", "metadata": {}, "outputs": [], "source": [ "import numpy\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "id": "d35579ac", "metadata": {}, "source": [ "# Study of algorithm\n", "\n", "* Improve Performance, $P$\n", "* At some Task, $T$\n", "* With Experience, $E$\n", "\n", "Learning: **Improving $P$ at $T$ with $E$**\n", "\n", "* $T$: Output\n", "* $E$: Training Data\n", "* $P$: Target (or Loss) function\n", " * If you cannot measure it, you cannot improve it - Kelvin\n", " * e.g.: Error rate, Euclidean distance, Logproba, Information theoretical measures(Mutual information, KL)" ] }, { "cell_type": "code", "execution_count": null, "id": "0d742636", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "255ea9b1", "metadata": {}, "source": [ "# Derivation w.r.t Matrix\n", "\n", "In the typical $f: \\R \\to \\R$\n", "$$f(x) = ax, \\quad df/dx = a$$\n", "and\n", "\n", "$$f(x) = x^2, \\quad df/dx = 2x$$\n", "\n", "\n", "By the way, $f = w^Tx,\\, (w \\in \\R^D, x\\in \\R^D)$\n", "\n", "$$\\frac{df}{dx} = \\frac{\\partial f}{\\partial x_1}$$\n", "\n", "\n", "In the case $f(x) = x^2 = x^Tx$\n", "\n", "$$\\frac{df}{dx} = 2x$$\n", "\n", "for example: $f(x) = w^Tx$\n", "\n", "$$f(x) = \\sum w_i x_i$$\n", "$$\\frac{\\partial f}{\\partial x_i} = w_i$$\n", "$$\\therefore \\frac{d f}{d x} = w$$" ] }, { "cell_type": "markdown", "id": "84468a76", "metadata": {}, "source": [ "## trace \n", "$tr[M] = \\sum^{D}_{i=1}{M_{ii}}$" ] }, { "cell_type": "markdown", "id": "e8671c90", "metadata": {}, "source": [] } ], "metadata": { "kernelspec": { "display_name": "2025-02-AI (3.12.11)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.11" } }, "nbformat": 4, "nbformat_minor": 5 }